Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8839050 | Brain Research Bulletin | 2018 | 35 Pages |
Abstract
In this review, we cover various aspects of these local signaling events and discuss how structural and biophysical properties of astrocytes might foster such compartmentation. Astrocytes metabolically interact with neurons by providing energy substrates to active neurons. As a single astrocyte branch covers hundreds to thousands of synapses, it is tempting to speculate that these metabolic interactions could occur localized to specific subdomains of astrocytes, perhaps even at the level of small groups of synapses. We discuss how astrocytic metabolism might be regulated at this scale and which signals might contribute to its regulation. We speculate that the astrocytic structures that light up transiently as Ca2+-microdomains might be the functional units of astrocytes linking signaling and metabolic processes to adapt astrocytic function to local energy demands. The understanding of these local regulatory and metabolic interactions will be fundamental to fully appreciate the complexity of brain energy homeostasis as well as its failure in disease and may shed new light on the controversy about neuron-glia bi-directional signaling at the tripartite synapse.
Related Topics
Life Sciences
Neuroscience
Cellular and Molecular Neuroscience
Authors
Martin Oheim, Elke Schmidt, Johannes Hirrlinger,