Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8839836 | Brain Research | 2018 | 42 Pages |
Abstract
Enriched environment (EE) has been shown to promote post-stroke neurogenesis and functional recovery. However, the underlying molecular mechanisms remains poorly understood. Male C57BL/6 mice underwent 60-min middle cerebral artery occlusion (MCAO) followed by reperfusion, after which mice were housed in either standard environment (SE) or EE. We found that post-ischemic EE exhibited reduced protein level of nuclear factor κB (NF-κB)/p65 in cytoplasm and increased its expression correspondingly in nucleus at 28â¯days post-ischemia (dpi). However, post-ischemic EE had no effects on terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL)-positive cells in ischemic hemisphere at 28dpi. EE mice treated with NF-kB inhibitor Bay11-7082 had decreased subventricular zone (SVZ) neural precursor cells (NPCs) proliferation, neuronal differentiation and subsequent functional recovery after stroke at 28dpi. Bay11-7082 treatment attenuated the promoting effects of post-ischemic EE on interleukin 17A (IL-17A) messenger RNA (mRNA) and protein expression at 28dpi. Furthermore, our in vitro data revealed that in primary astrocyte cultures addition of Bay11-7082 markedly decreased the expression of IL-17A in both the cell lysate and culture supernatant of activated astrocytes. Blockade of IL-17A with neutralizing antibody abrogated the promoting role of EE in NPCs proliferation derived from SVZ, neuronal differentiation and subsequent functional recovery after stroke. Thus, our results reveal a previously uncharacterized property of NF-κB/IL-17A signaling pathway in EE-mediated neurogenesis and functional recovery after ischemic stroke.
Related Topics
Life Sciences
Neuroscience
Neuroscience (General)
Authors
Yujing Zhang, Dan Xu, Hong Qi, Yin Yuan, Hong Liu, Shanglong Yao, Shiying Yuan, Jiancheng Zhang,