Article ID Journal Published Year Pages File Type
8840766 Neuroscience 2018 28 Pages PDF
Abstract
Following peripheral nerve injury, Schwann Cells (SCs) undergo dedifferentiation, proliferation, migration, and remyelination. Recent works demonstrated the importance of the short non-coding RNA (miRNAs) in SC dedifferentiation and remyelination after nerve injury. Previously, we found some miRNAs like miR-9, miR-221, miR-222 and miR-182 could regulate the proliferation and migration of SCs. Therefore, it is imperative to ask whether these miRNAs could regulate the myelination of SCs. Here we demonstrated that miR-221-3p could inhibit the myelination of SCs when co-cultured with dorsal root ganglion cells in vitro. In addition, NGF1-A binding protein 1 (Nab1) which was essential for SCs myelination could be downregulated by miR-221-3p. Suppressing the expression of Nab1 could reverse the promotion of miR-221-3p antagomir on SC myelination. The effects of miR-221-3p on SC myelination might be used to improve peripheral nerve regeneration, thus offering a new approach to peripheral nerve repair.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , , , , , ,