Article ID Journal Published Year Pages File Type
8841360 Neuroscience Letters 2018 22 Pages PDF
Abstract
MicroRNAs (miRNAs) have crucial functions in the regulation of proliferation and differentiation of neural stem cells (NSCs). MiR-124 has been reported to be implicated in neurogenesis. However, the precise function and mechanism of miR-124 still need further verification. In this study, we identified paired box 3 (PAX3) as a potential target of miR-124 using bioinformatics approaches. Next, we found PAX3 had reversed expression pattern with miR-124 as well as TUBB3 and GFAP. Dual-luciferase assay showed that miR-124 could bind to the 3′-UTR of PAX3 mRNA and restrain its expression. It was demonstrated that overexpression and knocking down of miR-124 in NSCs could promote the survival and suppress the apoptosis of NSCs. Meanwhile, miR-124 enhanced the expression of TUBB3 and GFAP via impairing PAX3 expression. Mechanistic study revealed that augmented Akt-GSK3β signaling pathway was the driving-force for the regulatory functions of miR-124 in NSCs. In summary, this study for the first time uncovered that miR-124 could suppress PAX3 expression, which in turn regulated the differentiation of NSCs.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , ,