Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8850571 | Chemosphere | 2018 | 10 Pages |
Abstract
The calanoid copepod Acartia tonsa is a reference species in standardized ecotoxicology bioassay. Despite this interest, there is a lack of knowledge on molecular responses of A. tonsa to contaminants. We generated a de novo assembled transcriptome of A. tonsa exposed 4 days to 8.5 and 17â¯mg/L nickel nanoparticles (NiNPs), which have been shown to reduce egg hatching success and larval survival but had no effects on the adults. Aims of our study were to 1) improve the knowledge on the molecular responses of A. tonsa copepod and 2) increase the genomic resources of this copepod for further identification of potential biomarkers of NP exposure. The de novo assembled transcriptome of A. tonsa consisted of 53,619 unigenes, which were further annotated to nr, GO, KOG and KEGG databases. In particular, most unigenes were assigned to Metabolic and Cellular processes (34-45%) GO terms, and to Human disease (28%) and Organismal systems (23%) KEGG categories. Comparison among treatments showed that 373 unigenes were differentially expressed in A. tonsa exposed to NiNPs at 8.5 and 17â¯mg/L, with respect to control. Most of these genes were downregulated and took part in ribosome biogenesis, translation and protein turnover, thus suggesting that NiNPs could affect the copepod ribosome synthesis machinery and functioning. Overall, our study highlights the potential of toxicogenomic approach in gaining more mechanistic and functional information about the mode of action of emerging compounds on marine organisms, for biomarker discovering in crustaceans.
Keywords
Related Topics
Life Sciences
Environmental Science
Environmental Chemistry
Authors
Chao Zhou, Ylenia Carotenuto, Valentina Vitiello, Changwen Wu, Jianshe Zhang, Isabella Buttino,