Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8851792 | Chemosphere | 2018 | 30 Pages |
Abstract
Saccharomyces cerevisiae and nanoparticles of iron oxide (Fe3O4) which were linked with chitosan (CS) through epichlorohydrin (ECH) were encapsulated in calcium alginate to prepare a novel type of bionanocomposites. Characterization results showed that the Fe3O4-ECH-CS nanoparticles were quasi-spherical with an average diameter of 30â¯nm to which chitosan was successfully attached through epichlorohydrin. The saturation magnetization value of the nanoparticles was 21.88 emu/g, and ferrous and ferric irons were simultaneously observed in the magnetic nanoparticles. Data of atrazine removal by yeasts showed that both inactivated and live yeasts could decrease the concentration of atrazine effectively. The inactivated yeasts achieved 20% removal rate, which indicated that adsorption by the yeasts also played a role in the removal. Removal efficiency of atrazine was maximized at 88% under 25â¯Â°C, pH of 7 and an initial atrazine concentration of 2â¯mg/L. When the magnetic bionanocomposite was recycled and reused twice, only 12% and 20% drop in removal efficiency was observed at the first time and the second time severally. So, atrazine could be used by the yeasts as the sole carbon source for growth and multiplication, and both adsorption and biodegradation by the bionanocomposite contributed to atrazine removal.
Keywords
Related Topics
Life Sciences
Environmental Science
Environmental Chemistry
Authors
Canyao Zhu, William L. Yang, Huijun He, Chunping Yang, Jiaping Yu, Xin Wu, Guangming Zeng, Sheldon Tarre, Michal Green,