Article ID Journal Published Year Pages File Type
8851916 Chemosphere 2018 33 Pages PDF
Abstract
A size-segregated gas/particle partitioning coefficient KPi was proposed and evaluated in the predicting models on the basis of atmospheric polybrominated diphenyl ether (PBDE) field data comparing with the bulk coefficient KP. Results revealed that the characteristics of atmospheric PBDEs in southeast Shanghai rural area were generally consistent with previous investigations, suggesting that this investigation was representative to the present pollution status of atmospheric PBDEs. KPi was generally greater than bulk KP, indicating an overestimate of TSP (the mass concentration of total suspended particles) in the expression of bulk KP. In predicting models, KPi led to a significant shift in regression lines as compared to KP, thus it should be more cautious to investigate sorption mechanisms using the regression lines. The differences between the performances of KPi and KP were helpful to explain some phenomenon in predicting investigations, such as PL0 and KOA models overestimate the particle fractions of PBDEs and the models work better at high temperature than at low temperature. Our findings are important because they enabled an insight into the influence of particle size on predicting models.
Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , , ,