Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8853368 | Ecotoxicology and Environmental Safety | 2018 | 7 Pages |
Abstract
To identify possible cadmium (Cd) accumulators or hyperaccumulators among ornamental plants, a pot experiment involving increasing Cd concentration (0, 5, 15, 30, 60, and 100â¯mgâ¯kgâ1) was conducted among seven species. The principal objective was to screen for ornamental plants with an exceptional ability to accumulate and translocate Cd ions as well as sufficient biomass for harvesting. Regarding shoot biomass, root biomass, plant height and tolerance index (TI), Malva rotundifolia showed high tolerance to Cd and Malva crispa, Sida rhombifolia, Celosia argentea and Celosia cristata medium tolerance; Althaea rosea and Abutilon theophrasti were more sensitive to Cd than the other plants. A hormetic response was induced by Cd in M. crispa, C. argentea, C. cristata and M. rotundifolia. Based on its capacity for Cd accumulation, bioaccumulation coefficients (BCFs) and translocation factors (TFs), M. rotundifolia was selected from candidate plants after 60 days of exposure to Cd-contaminated soil and found to have accumulated more than 200â¯mgâ¯kgâ1 Cd in its roots and 900â¯mgâ¯kgâ1 in its shoots. Moreover, M. rotundifolia BCFs and TFs were higher than 1.0, with the former ranging from 1.41 to 3.31 and the latter from 1.03 to 7.37. Taken together, these results indicate that M. rotundifolia can be classified as a model hyperaccumulator.
Related Topics
Life Sciences
Environmental Science
Environmental Chemistry
Authors
Mengxi Wu, Qiao Luo, Shiliang Liu, Yin Zhao, Yue Long, Yuanzhi Pan,