Article ID Journal Published Year Pages File Type
8853724 Ecotoxicology and Environmental Safety 2018 10 Pages PDF
Abstract
Little is known about the physiological and molecular responses of leaves to aluminum (Al)-toxicity. Seedlings of Al-intolerant Citrus grandis and Al-tolerant Citrus sinensis were supplied daily with nutrient solution containing 0 mM (control) and 1.0 mM (Al-toxicity) AlCl3·6H2O for 18 weeks. We found that Al-treatment only decreased CO2 assimilation in C. grandis leaves, and that the Al-induced alterations of gene expression profiles were less in C. sinensis leaves than those in C. grandis leaves, indicating that C. sinensis seedlings were more tolerant to Al-toxicity than C. grandis ones. Al concentration was similar between Al-treated C. sinensis and C. grandis roots, but it was higher in Al-treated C. grandis stems and leaves than that in Al-treated C. sinensis stems and leaves. Al-treated C. sinensis seedlings accumulated relatively more Al in roots and transported relatively little Al to shoots. This might be responsible for the higher Al-tolerance of C. sinensis. Further analysis showed that the following several aspects might account for the higher Al-tolerance of C. sinensis, including: (a) Al-treated C. sinensis leaves had higher capacity to maintain the homeostasis of energy and phosphate, the stability of lipid composition and the integrity of cell wall than did Al-treated C. grandis leaves; (b) Al-triggered production of reactive oxygen species (ROS) and the other cytotoxic compounds was less in Al-treated C. sinensis leaves than that in Al-treated C. grandis leaves, because Al-toxicity decreased CO2 assimilation only in C. grandis leaves; accordingly, more upregulated genes involved in the detoxifications of ROS, aldehydes and methylglyoxal were identified in Al-treated C. grandis leaves; in addition, flavonoid concentration was increased only in Al-treated C. grandis leaves; (c) Al-treated C. sinensis leaves could keep a better balance between protein phosphorylation and dephosphorylation than did Al-treated C. grandis leaves; and (d) both the equilibrium of hormones and hormone-mediated signal transduction were greatly disrupted in Al-treated C. grandis leaves, but less altered in Al-treated C. sinensis leaves. Finally, we discussed the differences in Al-responsive genes between Citrus roots and leaves.
Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , , ,