Article ID Journal Published Year Pages File Type
8854619 Ecotoxicology and Environmental Safety 2018 12 Pages PDF
Abstract
The constant release of pharmaceuticals products to aquatic environment even at low concentrations (ng L−1 to µg L−1) could lead to unknown chronic effects to non-target organisms. The aim of this study was to evaluate neurotoxic responses, inflammation, gametogenic activity and energy status on the fresh water clam C. fluminea after exposure to different concentrations of caffeine (CAF), ibuprofen (IBU), carbamazepine (CBZ), novobiocin (NOV) and tamoxifen (TMX) for 21 days under laboratory conditions. During the assay, water was spiked every two days with CAF (0; 0.1; 5; 15; 50 µg L−1), IBU (0; 0.1; 5; 10; 50 µg L−1), CBZ, NOV, and TMX (0.1, 1, 10, 50 µg L−1). After the exposure period, dopamine levels (DOP), monoamine oxidase activity (MAO), arachidonic acid cyclooxygenase activity (COX), vitellogenin-like proteins (VTG), mitochondrial electron transport (MET), total lipids (TLP), and energy expenditure (MET/TLP) were determined in gonad tissues, and acetyl cholinesterase activity (AChE) was determined in digestive gland tissues. Results showed a concentration-dependence response on biomarkers tested, except for MAO. Environmental concentrations of pharmaceuticals induced significant changes (p < 0.05) in the neurotoxic responses analyzed (CAF, CBZ and NOV increased DOP levels and CBZ inhibited AChE activity), inflammation (CAF induced COX), and energy status (MET and TLP increased after exposure to CBZ, NOV and TMX). Responses of clams were related to the mechanism of action (MoA) of pharmaceuticals. Biomarkers applied and the model organism C. fluminea constituted a suitable tool for environmental risk assessment of pharmaceutical in aquatic environment.
Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , ,