Article ID Journal Published Year Pages File Type
8864139 Atmospheric Environment 2018 20 Pages PDF
Abstract
We found that the impact on biogenic emission account for minor changes in the concentrations of ozone (O3), oxides of nitrogen NOx = NO + NO2 and nitric acid (HNO3). On the other hand, the dominating component acting is the increased vertical mixing, resulting in up to 5 ppbv increase of urban ozone concentrations while causing −2 to −3 ppbv decreases and around 1 ppbv increases of NOx and HNO3 surface concentrations, respectively. The temperature impact alone results in reduction of ozone, increase in NO, decrease in NO2 and increases of HNO3. The wind impact leads, over urban areas, to ozone decreases, increases of NOx and a slight increase in HNO3. The overall impact is similar to the impact of increased vertical mixing alone. The Process Analysis (PA) technique implemented in CAMx was adopted to investigate the causes of the modeled impacts in more details. It showed that the main process contributing to the temperature impact on ozone is a dry-deposition enhancement, while the dominating process controlling the wind impact on ozone over cities is the advection reduction. In case of the impact of enhanced turbulence, PA suggests that ozone increases are, again as assumed, the result of increased downward vertical mixing supported by reduced chemical loss. Comparing the model concentrations with measurements over urban areas, a slight improvement of the model performance was achieved during afternoon hours if urban canopy forcing on chemistry via meteorology was accounted for. The study demonstrates that disregarding the urban canopy induced meteorological effects in air-quality oriented modeling studies can lead to erroneous results in the calculated species concentrations. However, it also shows that the individual components are not equally important: urban canopy induced turbulence effects dominate while the wind-speed and temperature related ones are of considerably smaller magnitude.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , , ,