Article ID Journal Published Year Pages File Type
8866598 Remote Sensing of Environment 2018 13 Pages PDF
Abstract
Digital Elevation Models (DEMs) such as Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Models (ASTER GDEM), or Shuttle Radar Topography Mission DEM (SRTM) are widely used in remote areas and non-industrial countries because of their availability rather than their accuracy. Although a global DEM can be considerably enhanced using additional reference information such as higher resolution DEMs or ground truth points, improving accuracy in areas without reference data remains a challenge. This paper develops an approach to improve the accuracy of the estimated topography by combining two complementary DEMs (ASTER GDEM 1 arc-second and SRTM DEM 1 arc-second) in regions missing reference data. The combination approach is based on formulating relationships between slopes and weights in sites with reference data. Then the developed relationships are applied to sites with similar geomorphology to determine the combination weight for each DEM without using reference data. The results indicate that combined DEMs offer significant improvements of 47% and 20% in mean bias over a mountainous site, and 16% and 58% at a low-relief site when compared with the SRTM and ASTER GDEM products, respectively. DEM-derived drainages were also found to be more accurate for the combined DEMs than the near-global DEMs in areas where reference data is not available.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , , ,