Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8866941 | Remote Sensing of Environment | 2017 | 10 Pages |
Abstract
The Ocean Colour Climate Change Initiative (OC-CCI) has produced a climate-quality, error characterised, dataset of ocean-colour products (a designated Essential Climate Variable or 'ECV'). The OC-CCI project uses an optical classification scheme based on fuzzy logic (Moore et al. 2001), to assign product uncertainties on a pixel-by-pixel basis. In this study we show that the pre-existing set of optical water classes derived from in-water remote-sensing reflectance data are insufficient to classify all Rrs spectra present in satellite data at the global scale, particularly in oligotrophic regions. We generate a new set of optical water classes from millions of satellite-derived ocean-colour spectra, providing an improvement in distribution of cumulative class membership values. The use of these classes for uncertainty assignment are demonstrated for chlorophyll-a, utilising a large in situ database of measurements. In addition to being used for uncertainty assignment, performance of multiple chlorophyll algorithms is assessed within each of the classes and a method for blending algorithms while avoiding sharp boundaries, in order to improve final product quality, using class membership is illustrated.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Computers in Earth Sciences
Authors
Thomas Jackson, Shubha Sathyendranath, Frédéric Mélin,