Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8867638 | Global and Planetary Change | 2018 | 52 Pages |
Abstract
Annual mean surface air temperatures for the studied interglacials are between 0.4 °C to 0.7 °C higher than a comparable Pliocene experiment using modern orbital parameters. Increased spring/summer and reduced autumn/winter insolation in the Northern Hemisphere during MIS G17, K1 and KM3 enhances seasonality in surface air temperature. The two most robust and notable regional responses to this in vegetation cover occur in North America and continental Eurasia, where forests are replaced by more open-types of vegetation (grasslands and shrubland). In these regions our model results appear to be inconsistent with local palaeobotanical data. The orbitally driven changes in seasonal temperature and precipitation lead to a ~ 30% annual reduction in available deep soil moisture (2.0 m from surface), a critical parameter for forest growth, and subsequent reduction in the geographical coverage of forest-type vegetation; a phenomenon not seen in comparable simulations of Pliocene climate and vegetation run with a modern orbital configuration. Our results demonstrate the importance of examining model performance under a range of realistic orbital forcing scenarios within any defined time interval (e.g. mPWP). Additional orbitally resolved records of regional vegetation are needed to further examine the validity of model-predicted regional climate and vegetation responses in greater detail.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Earth-Surface Processes
Authors
C.L. Prescott, A.M. Dolan, A.M. Haywood, S.J. Hunter, J.C. Tindall,