Article ID Journal Published Year Pages File Type
8868335 Palaeogeography, Palaeoclimatology, Palaeoecology 2018 43 Pages PDF
Abstract
Climate and vegetation history from the Yucatán Peninsula, southeastern Mexico, are inferred from a mangrove sediment core deposited between the middle and late Holocene (~5600-1700 cal yr B.P.) in the Rio Hondo Delta. Fossil pollen and concentrations of Ca and Fe and Ca/Fe ratio in sediments are used to record changes in vegetation and climate. Palaeoecological and palaeoclimatic interpretations obtained from pollen abundances and associations and Fe/Ca ratio coincide with dynamics of major global forcings of climate change like ITCZ, ENSO and global cooling. Mesic conditions enabled tropical forest expansion during the middle Holocene (~5600-3650 cal yr B.P.), although there were periodic dry episodes at ~5200 cal yr B.P. and at ~4300 cal yr B.P. that caused disturbance and enabled herbaceous vegetation to expand. Changes in sedimentation and a gradual change from semi-evergreen to dry tropical forest occurred at ~3650 cal yr B.P., with increasing ENSO activity and southward migration of the ITCZ during transition of the middle to late Holocene. The driest period and lowest forest cover occurred between ~2600 and 2000 cal yr B.P. Data show that over the last two millennia, influence of the ENSO on southeastern Mexico is stronger compared to other proxy-records of climate variability from the Caribbean region.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , , ,