Article ID Journal Published Year Pages File Type
8869381 Waste Management 2018 11 Pages PDF
Abstract
Three dimensional chemically cross-linked polymer networks present a great challenge for recycling and reutilization of waste tire rubber. In this work, the covalently cross-linked networks of ground tire rubber (GTR) were degraded heterogeneously under 150 °C due to the synergistic effects of the soybean oil and controlled oxidation. The degradation mechanism was discussed using Horikx theory and Fourier transformation infrared spectroscopy (FTIR). The results showed that the structural evolution of sol and gel parts, which indicated that the sols consisted of degraded GTR chains with low molecular weight, while the gels were mainly composed of bound rubber coated carbon black, which are separated from the cross-linked network of GTR in a high degradation degree. The degraded GTR compound demonstrated an excellent reinforcing effect on solution styrene-butadiene rubber (SSBR), due to the presence of core-shell structured carbon black. This work provide an efficient and economic approach to degrade GTR and transform it into useful products.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , , , ,