Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8869585 | Waste Management | 2018 | 12 Pages |
Abstract
The dynamic characterization of municipal solid waste (MSW), especially in regions with high seismicity, is of considerable importance in the stability assessment of landfills. Additionally, findings indicated that the response of MSW under dynamic loadings is significantly affected by fibrous material. Therefore, a comprehensive strain-controlled cyclic triaxial testing program was performed on MSW samples retrieved from a landfill in the Kahrizak area, Tehran province. The tests were conducted on fresh MSW specimens (with a diameter of 100â¯mm) with different percentage of fibers in the consolidated undrained condition. The potential reinforcing capability of fibers and their impacts on changes in the MSW composition were investigated under variations of different factors including confining pressure, loading frequency, Poisson's ratio, and loading cycles. From the results of the study, increasing fiber content in specimens resulted in improved elastic behavior of MSW under dynamic loadings, irrespective of the test conditions, such that the normalized shear modulus reduction curves shifted to the right, while the damping ratio curves exhibited no specific trend. However, it is necessary to simultaneously consider the impact of fiber contents, confining stress and shear strain on the variation rates of normalized shear modulus reduction values. This trend is attributed to the greater values of stiffness from changing the composition when compared with the one generated by obtained reinforcement within the studied strain range. Given the lack of systematic evaluations on the effect of the fibrous waste materials on the dynamic response of MSW, the results of this study provide additional insight into the seismic analysis of landfills.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geotechnical Engineering and Engineering Geology
Authors
P. Alidoust, M. Keramati, N. Shariatmadari,