Article ID Journal Published Year Pages File Type
8886484 Ocean Modelling 2018 46 Pages PDF
Abstract
This study aims at characterizing the distinctive features of a spatio-temporal nonlinear wave surface. We analyze wind-generated 3-D wave fields observed during the passage of an atmospheric front, which led to a wide directional spreading of wave energy. Data were acquired from the ocean research station Socheongcho-ORS (Yellow Sea) with a stereo wave imaging system. They include 3-D (i.e. 2-D + time) measurements of the sea surface elevation with high spatial and temporal resolution over a swath larger than any previous similar deployment. We examine the shape and the nonlinear properties of the wavenumber/frequency 3-D wave spectrum, and the characteristic spatial, temporal and spatio-temporal length scales of the wave field. We then focus on analyzing the probability of occurrence and the spatio-temporal size of the rogue waves we identified in the data. In particular, we provide for the first time an empirical estimate of the extent of the horizontal sea surface spanned by rogue waves. We also propose and assess a novel strategy to determine from the 3-D wave spectrum the vertical current profile, to be then used to map the spectrum on intrinsic frequencies.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , , , , , ,