Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8894505 | Journal of Hydrology | 2018 | 54 Pages |
Abstract
Land-use change and climate variability have the potential to alter river flow and groundwater resources dramatically, especially by modifying actual evapotranspiration. Seven catchments with intermittent flow dominated by either winter-active perennial pastures (4 catchments) or Eucalyptus globulus plantations (3 catchments), located in 3 geologic settings of southeastern Australia, were studied for over 6â¯years to determine the primary controls on water resources. Groundwater levels in the pasture sites were stable through the 2011-2016 study period, while levels in the plantations declined in the same period. Streamflow occurred mainly during winter. Annual streamflow showed no difference clearly attributable to pasture versus plantation land use. The presence of grass buffers along streams enhances groundwater recharge and saturation-dependent overland flow, reducing the impacts of the plantations on streamflow. Site water balances indicated that the average annual actual evapotranspiration was 87-93% of precipitation for pasture catchments and 102-108% of precipitation for plantation catchments. Actual evapotranspiration greater than precipitation at the plantations was attributed to uptake of groundwater by the root system in parts of the catchments. Thus, change to groundwater storage is a critical component in the water balance. Actual evapotranspiration from pasture catchments was higher than previously estimated from global pasture and cropping data, instead matching global precipitation versus actual evapotranspiration curves for treed catchments.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Earth-Surface Processes
Authors
P. Evan Dresel, Joshua F. Dean, Fahmida Perveen, John A. Webb, Peter Hekmeijer, S. Michael Adelana, Edoardo Daly,