Article ID Journal Published Year Pages File Type
8895168 Journal of Hydrology 2018 14 Pages PDF
Abstract
The objective of the paper is to describe a vertical numerical flow model based on Richards' equation using these data that was developed to simulate infiltrating rainwater flow from the ground surface to the saturated aquifer. The MARTHE computer code, which models the unsaturated-saturated continuum, was adapted to reproduce the monitored high saturation periods. Composite constitutive functions (hydraulic conductivity-saturation and pressure-saturation) that integrate the increase in hydraulic conductivity near saturation and extra available porosity resulting from fractures were introduced into the code. Using these composite constitutive functions, the model was able to accurately simulate the water contents and pressures at all depths over the entire monitored period, including the infiltration tests. The soil temperature was also accurately simulated at all depths, except during the infiltrations tests, which contributes to the model validation. The model was used to calculate the aquifer recharge over a long period that included droughts and floods. The calculated recharge is realistic as it makes it possible to simulate the corresponding monitored groundwater level data, which increases confidence in the modelling approach.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,