Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8895816 | Journal of Algebra | 2018 | 6 Pages |
Abstract
Given a normal toric algebra R, we compute a uniform integer D=D(R)>0 such that the symbolic power P(DN)âPN for all N>0 and all monomial primes P. We compute the multiplier D explicitly in terms of the polyhedral cone data defining R, illustrating the output for Segre-Veronese algebras.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Robert M. Walker,