Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8896184 | Journal of Algebra | 2018 | 17 Pages |
Abstract
Higman's PORC theory implies that the number Nd,r(q) of isomorphism types of nilpotent associative algebras of dimension d, rank r and class 2 over a finite field with q elements, considered as a function in q, can be described by a polynomial on residue classes in q. We describe an algorithm that, given a rank r, determines such polynomials for Nd,r(q) for all dimensions d. Using this, we determine Nd,r(q) for râ{1,â¦,5} and arbitrary d.
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
Bettina Eick, Morten Wesche,