Article ID Journal Published Year Pages File Type
8897993 Linear Algebra and its Applications 2018 21 Pages PDF
Abstract
As is well known, for every orthogonal transformation of the Euclidean space there exists an orthogonal basis such that the matrix of the transformation is block-diagonal with first order blocks ±1 and second order blocks that are rotations of the Euclidean plane. There exists a natural generalization of this theorem for Lorentz transformations of pseudo-Euclidean spaces with signature (1,n−1). In addition to invariant subspaces appearing in the Euclidean case, Lorentz transformations can have invariant subspaces of two new types: invariant plane with the Lorenz rotation and 3-dimensional cyclic subspace with isotropic eigenvector and eigenvalue ±1. In this paper, we present similar results about the structure of isomorphisms of pseudo-Euclidean spaces with signature (p,n−p) for p=2,3.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,