Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8898179 | Annales de l'Institut Henri Poincare (C) Non Linear Analysis | 2017 | 25 Pages |
Abstract
We consider the quadratic derivative nonlinear Schrödinger equation (dNLS) on the circle. In particular, we develop an infinite iteration scheme of normal form reductions for dNLS. By combining this normal form procedure with the Cole-Hopf transformation, we prove unconditional global well-posedness in L2(T), and more generally in certain Fourier-Lebesgue spaces FLs,p(T), under the mean-zero and smallness assumptions. As a byproduct, we construct an infinite sequence of quantities that are invariant under the dynamics. We also show the necessity of the smallness assumption by explicitly constructing a finite time blowup solution with non-small mean-zero initial data.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Jaywan Chung, Zihua Guo, Soonsik Kwon, Tadahiro Oh,