Article ID Journal Published Year Pages File Type
8898351 Differential Geometry and its Applications 2018 22 Pages PDF
Abstract
We establish the conditions for the induced generalized metric F structure of an oriented hypersurface of a generalized Kähler manifold to be a generalized CRFK structure. Then, we discuss a notion of generalized almost contact structure on a manifold M that is suggested by the induced structure of a hypersurface. Such a structure has an associated generalized almost complex structure on M×R. If the latter is integrable, the former is normal and we give the corresponding characterization. If the structure on M×R is generalized Kähler, the structure on M is said to be binormal. We characterize binormality and give an example of binormal structure.
Keywords
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,