Article ID Journal Published Year Pages File Type
8898845 Journal of Differential Equations 2018 39 Pages PDF
Abstract
We study the well-posedness of a stochastic differential equation on the two dimensional torus T2, driven by an infinite dimensional Wiener process with drift in the Sobolev space L2(0,T;H1(T2)). The solution corresponds to a stochastic Lagrangian flow in the sense of DiPerna Lions. By taking into account that the motion of a viscous incompressible fluid on the torus can be described through a suitable stochastic differential equation of the previous type, we study the inviscid limit. By establishing a large deviations principle, we show that, as the viscosity goes to zero, the Lagrangian stochastic Navier-Stokes flow approaches the Euler deterministic Lagrangian flow with an exponential rate function.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, ,