Article ID Journal Published Year Pages File Type
8898884 Journal of Differential Equations 2018 39 Pages PDF
Abstract
In this paper, we are concerned with the asymptotic behavior of solutions to the system of Euler equations with time-depending damping, in particular, include the constant coefficient damping. We rigorously prove that the solutions time-asymptotically converge to the diffusion wave whose profile is self-similar solution to the corresponding parabolic equation, which justifies Darcy's law. Compared with previous results about Euler equations with constant coefficient damping obtained by Hsiao and Liu (1992) [2], and Nishihara (1996) [9], we obtain a general result when the initial perturbation belongs to the same space, i.e. H3(R)×H2(R). Our proof is based on the classical energy method.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , , ,