Article ID Journal Published Year Pages File Type
8899442 Journal of Mathematical Analysis and Applications 2018 41 Pages PDF
Abstract
We investigate an M/M/1 queue operating in two switching environments, where the switch is governed by a two-state time-homogeneous Markov chain. This model allows to describe a system that is subject to regular operating phases alternating with anomalous working phases or random repairing periods. We first obtain the steady-state distribution of the process in terms of a generalized mixture of two geometric distributions. In the special case when only one kind of switch is allowed, we analyze the transient distribution, and investigate the busy period problem. The analysis is also performed by means of a suitable heavy-traffic approximation which leads to a continuous random process. Its distribution satisfies a partial differential equation with randomly alternating infinitesimal moments. For the approximating process we determine the steady-state distribution, the transient distribution and a first-passage-time density.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , , ,