Article ID Journal Published Year Pages File Type
8899654 Journal of Mathematical Analysis and Applications 2018 20 Pages PDF
Abstract
This paper investigates the function theoretic properties of two reproducing kernel functions based on the Mittag-Leffler function that are related through a composition. Both spaces provide one parameter generalizations of the traditional Bargmann-Fock space. In particular, the Mittag-Leffler space of entire functions yields many similar properties to the Bargmann-Fock space, and several results are demonstrated involving zero sets and growth rates. The second generalization, the Mittag-Leffler space of the slitted plane, is a reproducing kernel Hilbert space (RKHS) of functions for which Caputo fractional differentiation and multiplication by zq (for q>0) are densely defined adjoints of one another.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
, , ,