Article ID Journal Published Year Pages File Type
8899942 Journal of Mathematical Analysis and Applications 2018 27 Pages PDF
Abstract
We consider transcendental meromorphic function for which the set of finite singularities of its inverse is bounded. Bergweiler and Kotus gave bounds for the Hausdorff dimension of the escaping sets if the function has no logarithmic singularities over ∞, the multiplicities of poles are bounded and the order is finite. We study the case of infinite order and find gauge functions for which the Hausdorff measure of escaping sets is zero or ∞.
Related Topics
Physical Sciences and Engineering Mathematics Analysis
Authors
,