Article ID Journal Published Year Pages File Type
8900493 Advances in Applied Mathematics 2018 22 Pages PDF
Abstract
In this paper, we study the desingularization problem in the first q-Weyl algebra. We give an order bound for desingularized operators, and thus derive an algorithm for computing desingularized operators in the first q-Weyl algebra. Moreover, an algorithm is presented for computing a generating set of the first q-Weyl closure of a given q-difference operator. As an application, we certify that several instances of the colored Jones polynomial are Laurent polynomial sequences by computing the corresponding desingularized operator.
Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,