Article ID Journal Published Year Pages File Type
8900741 Applied Mathematics and Computation 2018 15 Pages PDF
Abstract
This paper is devoted to identify a time-dependent source term in a time-space fractional diffusion equation by using the usual initial and boundary data and an additional measurement data at an inner point. The existence and uniqueness of a weak solution for the corresponding direct problem with homogeneous Dirichlet boundary condition are proved. We provide the uniqueness and a stability estimate for the inverse time-dependent source problem. Based on the separation of variables, we transform the inverse source problem into a first kind Volterra integral equation with the source term as the unknown function and then show the ill-posedness of the problem. Further, we use a boundary element method combined with a generalized Tikhonov regularization to solve the Volterra integral equation of the fist kind. The generalized cross validation rule for the choice of regularization parameter is applied to obtain a stable numerical approximation to the time-dependent source term. Numerical experiments for six examples in one-dimensional and two-dimensional cases show that our proposed method is effective and stable.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,