Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8900897 | Applied Mathematics and Computation | 2018 | 18 Pages |
Abstract
In this paper, we investigate the mean square error of numerical methods for SPDEs driven by Gaussian and non-Gaussian noises. The Gaussian noise considered here is a Hilbert space valued Q-Wiener process and the non-Gaussian noise is defined through compensated Poisson random measure associated to a Lévy process. As the models consider the influences of Gaussian and non-Gaussian noises simultaneously, this makes the models more realistic when the models are also influenced by some randomly abrupt factors, but more complicated. As a consequence, the numerical analysis of the problems becomes more involved. We first study the regularity for the mild solution. Next, we propose a semidiscrete finite element scheme in space and a fully discrete linear implicit Euler scheme for the SPDEs, and rigorously obtain their error estimates. Both the regularity results of the mild solution and error estimates obtained in the paper are novel.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Xu Yang, Weidong Zhao,