Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8901061 | Applied Mathematics and Computation | 2018 | 22 Pages |
Abstract
Nonlinear wave equation is extensively applied in a wide variety of scientific fields, such as nonlinear optics, solid state physics and quantum field theory. In this paper, two high-performance compact alternating direction implicit (ADI) methods are developed for the nonlinear wave equations. The first scheme is developed a three-level nonlinear difference scheme for nonlinear wave equations, where in x-direction, series of linear tridiagonal systems are solved by Thomas algorithm, while in y-direction, nonlinear algebraic system are computed by Newton's iterative method. In contrast, the second scheme is linear, and permits the multiple uses of the Thomas algorithm in both x- and y-directions, thus it saves much time cost. By using the discrete energy analysis method, it is shown that both the developed schemes can attain numerical accuracy of order O(Ï4+hx4+hy4) in H1-norm. Meanwhile, by the fixed point theorem and symmetric positive-definite properties of coefficient matrix, it is proved that they are both uniquely solvable. Besides, the proposed schemes are extended to the numerical solutions of the coupled sine-Gordon wave equations and damped wave equations. Finally, numerical results confirm the convergence orders and exhibit efficiency of our algorithms.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Dingwen Deng, Dong Liang,