Article ID Journal Published Year Pages File Type
8901582 Applied Mathematics and Computation 2018 19 Pages PDF
Abstract
In this paper, we propose a numerical method for the solution of time-dependent flow problems in mixed form. Such problems can be efficiently approximated on hierarchical grids, obtained from an unstructured coarse triangulation by using a regular refinement process inside each of the initial coarse elements. If these elements are considered as subdomains, we can formulate a non-overlapping domain decomposition method based on the lowest-order Raviart-Thomas elements, properly enhanced with Lagrange multipliers on the boundaries of each subdomain (excluding the Dirichlet edges). A suitable choice of mixed finite element spaces and quadrature rules yields a cell-centered scheme for the pressures with a local 10-point stencil. The resulting system of differential-algebraic equations is integrated in time by the Crank-Nicolson method, which is known to be a stiffly accurate scheme. As a result, we obtain independent subdomain linear systems that can be solved in parallel. The behavior of the algorithm is illustrated on a variety of numerical experiments.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,