Article ID Journal Published Year Pages File Type
8901799 Journal of Computational and Applied Mathematics 2018 36 Pages PDF
Abstract
New real structure-preserving decompositions are introduced to develop fast and robust algorithms for the (right) eigenproblem of general quaternion matrices. Under the orthogonally JRS-symplectic transformations, the Francis JRS-QR step and the JRS-QR algorithm are firstly proposed for JRS-symmetric matrices and then applied to calculate the Schur form of quaternion matrices. A novel quaternion Givens matrix is defined and utilized to compute the QR factorization of quaternion Hessenberg matrices. An implicit double shift quaternion QR algorithm is presented with a technique for automatically choosing shifts and within real operations. Numerical experiments are provided to demonstrate the efficiency and accuracy of newly proposed algorithms.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,