Article ID Journal Published Year Pages File Type
8902681 Applied Numerical Mathematics 2018 29 Pages PDF
Abstract
We consider a dynamic process of frictional contact between a non-clamped viscoelastic body and a foundation. We assume that the normal contact response depends on the depth of penetration of the foundation by the considered body, and the dependence between these two quantities is governed by normal compliance conditions. On the other hand, the friction force is assumed to be a nonmonotone function of the slip rate where the friction threshold also depends on the depth of the penetration. Our aim in this paper is twofold. The first one is to prove the existence and the uniqueness of a weak solution for the contact problem under consideration. The second one is to provide the numerical analysis of the process involving its semi-discrete and fully discrete approximation as well as estimation of the error for both numerical schemes and the validation of such a result.
Related Topics
Physical Sciences and Engineering Mathematics Computational Mathematics
Authors
, , ,