Article ID Journal Published Year Pages File Type
8902958 Discrete Mathematics 2018 11 Pages PDF
Abstract
A kernel by properly colored paths of an arc-colored digraph D is a set S of vertices of D such that (i) no two vertices of S are connected by a properly colored directed path in D, and (ii) every vertex outside S can reach S by a properly colored directed path in D. In this paper, we conjecture that every arc-colored digraph with all cycles properly colored has such a kernel and verify the conjecture for digraphs with no intersecting cycles, semi-complete digraphs and bipartite tournaments, respectively. Moreover, weaker conditions for the latter two classes of digraphs are given.
Keywords
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, , ,