Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8903018 | Discrete Mathematics | 2018 | 12 Pages |
Abstract
We show that the Möbius function of an interval in a permutation poset where the lower bound is sum (resp. skew) indecomposable depends solely on the sum (resp. skew) indecomposable permutations contained in the upper bound, and that this can simplify the calculation of the Möbius sum. For increasing oscillations, we give a recursion for the Möbius sum which only involves evaluating simple inequalities.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics
Authors
R. Brignall, D. Marchant,