Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8905456 | Comptes Rendus Mathematique | 2018 | 5 Pages |
Abstract
Nous prouvons que les problèmes à valeur finale sont bien posés pour une large classe d'opérateurs differentiels paraboliques. Ceci est obtenu via un espace de Hilbert qui caractérise l'existence des données impliquant l'existence, l'unicité et la stabilité des solutions. Cet espace de données est le domaine d'un opérateur non borné muni de la norme du graphe, qui représente une nouvelle condition de compatibilité pertinente pour les problèmes à valeur finale. Le cadre est celui des équations d'évolution pour des opérateurs de Lax-Milgram dans des espaces de distributions vectorielles. Nous étudions aussi le problème à valeur finale pour l'équation de la chaleur sur un ouvert lisse ; pour des données de Dirichlet non nulles, nous obtenons une extension non triviale de la condition de compatibilité par l'addition d'une intégrale de Bochner impropre.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)
Authors
Ann-Eva Christensen, Jon Johnsen,