Article ID Journal Published Year Pages File Type
8910666 Geochimica et Cosmochimica Acta 2018 75 Pages PDF
Abstract
The last deglacial was marked by tremendous changes in ocean temperature and circulation as well as atmospheric CO2 and 14C. We employed the “14C plateau-tuning technique” to a centennial-scale planktic 14C record of core MD08-3180 retrieved S.W. of the Azores Islands at ∼3060 m water depth to establish both a new standard of absolute age control and a record of past 14C reservoir ages of ocean surface waters. Both δ18O minima of G. bulloides and high planktic reservoir ages of ∼1600 to 2170 yr suggest two major melt water incursions that reached from the Labrador Sea up to the subtropics over Heinrich Stadial 1 (HS-1). In parallel, we established a record of (apparent) benthic ventilation ages that add the planktic 14C reservoir ages together with the benthic-planktic 14C age difference at the site and time of deposition, a sum finally adjusted to past changes in atmospheric 14C that occurred since the time of deep-water formation. Near the Azores apparent deep-water ages of the Last Glacial Maximum were as low as 340-740 yr, which suggests a lateral advection of young North Atlantic Deep Waters (NADW) from subpolar regions south of Iceland, in harmony with recent model simulation and in contrast to a widely assumed major shoaling of glacial deep-water formation. During HS-1, local benthic ventilation ages increased up to 2200-2550 yr, thus suggest an incursion of old southern-source deep waters, an unstable regime that was interrupted by brief pulses of NADW incursion near 16, 15.6 cal. ka, and most salient, near 14.9/14.7 ka.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, ,