Article ID Journal Published Year Pages File Type
8910815 Geochimica et Cosmochimica Acta 2018 16 Pages PDF
Abstract
The proposed reaction path for the formation of sepiolite is based on the temporal evolution of the chemical compositions of the experimental solution and solids: (i) Nucleation and growth of Al-sepiolite occurred during the first 8 days of the experimental runs via condensation and polymerization of SiOH tetrahedra onto Mg-Al-O-OH template sheets at a precipitation rate of ∼2.19 ± 0.01 × 10−10 mol s−1. (ii) At decreasing pH and in the absence of [Al]aq this intermediate phase transformed into aluminous sepiolite at a slower crystal growth rate of ∼1.08 ± 0.02 × 10−12 mol s−1. This finding explains the high abundances of sepiolite in highly alkaline, evaporitic, lacustrine and soil environments, where the growth rates of sepiolite are considered faster (10−11 to 10−10 mol s−1, Brady, 1992). We propose that (i) low rates of Mg2+ ion dehydration and silica condensation and polymerization at the surface of the initial precipitate, (ii) the formation of MgS040 aquo-complexes and (iii) the reduced sorption rates of [Si]aq and [Mg]aq at the active growth sites on sepiolite surfaces at pH ≤ 8.3 retard the precipitation of sepiolite in marine-diagenetic environments.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , ,