Article ID Journal Published Year Pages File Type
8911619 Lithos 2018 54 Pages PDF
Abstract
Early Cretaceous northwest (NW)-trending dolerite and amphibole lamprophyre dykes exposed in NW Zhejiang Province provide a number of new insights into the nature of the subcontinental mantle on the northeast (NE) South China Block (SCB). These dykes have a high Al2O3 (14.04-17.89 wt%) and K2O (0.66-2.69 wt%) contents but relatively low Na2O (2.48-4.61 wt%) and TiO2 (1.33-2.79 wt%) makeup alongside moderate K2O/Na2O ratios between 0.26 and 1.04. These amphibole lamprophyre dykes also have higher MgO, Cr, and Ni contents than those of comparable dolerites that have SiO2 content ranging from 46.32 to 49.87 wt%. The most striking feature of these intrusions is that they contain higher contents of Rb, Th, U, Nb, Ta, and LREE compared to their dolerite counterparts, although both amphibole lamprophyres and dolerites do exhibit similar geochemical patterns that are indicative of subduction-related origins. These features imply that an ambient peridotitic mantle that acted as the source for the amphibole lamprophyre magma source may have reacted with silicate-rich melts leading to olivine consumption while maintaining orthopyroxene. The geochemical composition of these dolerites are likely influenced to a variable extent by the fractionation of olivine, orthopyroxene, clinopyroxene, Fe-Ti oxides, and apatite, while their amphibole lamprophyre counterparts have been modified to a minor degree by amphibole fractionation. Measured Sr-Nd isotopic compositions suggest relatively constant Nd isotopic compositions (−0.36 to +1.52) with more variable Sr isotopic compositions (0.7071 to 0.7306). We hence propose that both the dolerite and amphibole lamprophyre dykes in this region are the products of mantle source metasomatism by the subducted Paleo-Pacific slab. The dolerite dykes are mainly associated with slab-derived fluids, while the lamprophyre dykes are related to both slab-derived fluids and sediment melts. Evidence in support of metasomatism comprising distinct two-stage processes including a fluid-dominated phase followed by a sediment melts-dominated metasomatism stage, further suggests that these mafic dykes most likely formed in a back-arc setting.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , , , , ,