Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8912297 | Petroleum Exploration and Development | 2017 | 6 Pages |
Abstract
N-eicosane, N-tetracosane, N-octacosane and N-dotriacontane, which are heavy n-alkanes, were selected to form binary systems with CO2. The bubble point pressures of each system were obtained through a series of constant component expansion (CCE) experiments. Variation laws and mechanisms of multiphase boundary of heavy n-alkanes-CO2 systems were studied. As CO2 fraction increased, the bubble point pressure of heavy n-alkanes-CO2 systems increased greatly, and the bubble point pressure increased linearly with temperature. When CO2 molar fraction is less than 50%, the bubble point pressure of the heavy n-alkanes-CO2 systems decreased slightly with the increase of carbon number, and the decrease of pressure amplitude decreased with the decrease of CO2 mole fraction. When CO2 molar fraction was 75%, the bubble point pressure of different heavy n-alkane systems increased slightly with the increase of carbon number. When CO2 molar fraction was less than 50%, with the increase of the carbon number, the influence of temperature variation on the bubble point pressure of systems decreased. When CO2 molar fraction was equal to 75%, with the increase of the carbon number, the influence of temperature variation on the bubble point pressure of heavy n-alkanes-CO2 systems did not change. On the analysis of micro scale, the reason for variation laws above is that the long chains and large intermolecular interval of heavy n-alkane has ability to accommodate CO2 molecules and its chain is prone to twist.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geochemistry and Petrology
Authors
Xiaolei LIU, Jishun QIN, Haishui HAN, Shi LI, Zemin JI,