Article ID Journal Published Year Pages File Type
8913760 Journal of African Earth Sciences 2017 64 Pages PDF
Abstract
The Gabal Nasb El Atshan Upper Carboniferous-Lower Permian altered trachytes include uranium up to 3165 ppm. The paleostress and resolved shear stress analyses of the deformation systems in Gabal Nasb El Atshan area indicate that the trachyte was subjected to WNW-ESE to E-W tensile shear stress directed extensional regimes. The low-stress regions in the vicinity of extensional faults and their associated joints were favorable locations for fluid flow and the consequence alteration and U-mineralization. This occurred more extensively along the contacts between the sills of trachyte and the Hammamat sedimentary rocks; where the latter acted as a physical barrier for the alteration fluids migration outward. Alteration styles include albitization, aegirinization, arfvedsonization, chloritization and ferruginisation. The albitization is the most common sodic metasomatism, giving sanidine from Or98.8Ab0.7 to Or62.3Ab37.6, anorthoclase from Or51.4Ab48.0 to Or12.2Ab87.6 and albite from Or11.0Ab89.0 to Or0.8Ab99.2. Aegirine and arfvedsonite formed due to decreasing sodium activity in the metasomatic fluids. Sodic metasomatism may be the source of uranium-enrichment, taking place during the late magmatic to deuteric processes. This was followed by a retrograde alteration of chloritization between 175 and 42 °C toward precipitation of Fe-oxides and alteration of primary uranium. Surficial low-temperature alteration remobilized and redistributed the produced uranylhydroxides and ferruginisation caused the reduction and adsorption of U forming betafite, uranophane, soddyite, umohoite, uranotile and uranopilite.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , , , ,