Article ID Journal Published Year Pages File Type
8915515 Journal of Applied Geophysics 2018 9 Pages PDF
Abstract
It is important to understand how magnetotelluric (MT) modeling can most effectively be performed in general anisotropic media. However, previous studies in this area have mainly focused on the use of one-dimensional (1D) and two-dimensional (2D) algorithms. Thus, building on earlier work, it is important to study the performance of three-dimensional (3D) modeling in arbitrary conductivity media; therefore, an edge-based finite element (FE) method has been developed for 3D MT modeling in arbitrary conductivity media. This approach is based on the initial derivation of a series of equivalent variational equations that are based on Maxwell equations, generated using the weighted residual method. Specific values were then obtained for coefficient matrixes of this edge-based FE method using hexahedral meshes, and the algorithm was verified by comparing its results with finite difference (FD) solutions generated using a 2D anisotropic model. Finally, the results of a 3D anisotropic model were analyzed detailed for three conditions; another 3D anisotropic model was designed and its results were compared with two isotropic models'.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, , , ,