Article ID Journal Published Year Pages File Type
8915543 Journal of Applied Geophysics 2018 36 Pages PDF
Abstract
The effect of naturally occurring ironsand on the spectral induced polarization response of shallow aquifer sands has been investigated. Laboratory measurements on mixtures of a low polarization silica sand with different proportions of ironsand characterize the main effect of an increasing proportion of ironsand as a lowering of the frequency at which the high frequency SIP phase starts to rise significantly. This ultimately obscures any low frequency polarization which might be related to the hydraulic properties of the sample. The measurements can be successfully modelled using the Maxwell-Clausius-Mossotti relationship and this has also been used to predict the expected SIP response of naturally occurring sands with different concentrations of ironsand. Modelling of these calculated responses using a Cole-Cole model suggests that the low frequency polarization time constant can be well resolved up to mass concentrations of ironsand of between 5 and 10%. The implications of this for the ability of SIP measurements to accurately map permeability variations in shallow aquifers are discussed.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
,