Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8915912 | Engineering Geology | 2018 | 30 Pages |
Abstract
Consolidated drained and undrained tests with pore pressure measurements were conducted on back-saturated specimens of a clay shale to characterize the influence of confinement and anisotropy on the pore pressure response and effective geomechanical properties (i.e. first-loading E-modulus, stress at onset of dilation and peak strength). Opalinus Clay, a clay shale chosen as host rock for high level nuclear waste in Switzerland was utilized. The result showed that there is a dependency on the confinement of Skempton's pore pressure parameter A and B, the stress at the onset of dilation, and the first-loading E-modulus. Additionally, a change in behavior of the material was observed at effective consolidation stresses between 5 and 8â¯MPa. The specimens at lower effective consolidation stresses (i.e. heavily overconsolidated specimens) showed a dilatant behavior in the pre-peak region and a significant post-failure stress drop. Specimens consolidated at higher effective consolidation stresses (i.e. slightly overconsolidated to normally consolidated specimens) showed compaction from initial loading until post-peak and a brittle-ductile post-failure behavior. These observations were manifested in pore pressure response curves, effective stress paths and stress-strain curves. Furthermore, they could be correlated to a non-linear appearance of the peak strength failure envelope. An explanation for the non-linear failure envelope related to the dilatant structure of the material is suggested.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geotechnical Engineering and Engineering Geology
Authors
Katrin M. Wild, Florian Amann,