Article ID Journal Published Year Pages File Type
8917074 South African Journal of Chemical Engineering 2017 47 Pages PDF
Abstract
Thermocatalytic Decomposition of Methane (TCD) is a completely green single step technology for producing hydrogen and carbon nanomaterials. This paper review about the research in laboratory-scale on TCD, specifically the recent advances like co-feeding effect and regeneration of catalyst for enhancing the productivity of the entire process. Although a remarkable success on the laboratory-scale has been fulfilled, TCD for free greenhouse gas (GHG) hydrogen production is still in its infancy. The necessity for commercialization of TCD is more than ever in the present-day condition of massive GHG emission. TCD generally studied over several types of catalysts, for example mono, bi, trimetallic, combination of metal-metal oxide, carbon and metal doped carbon catalysts. Catalyst Deactivation is the main problem found in TCD process. Regeneration of catalyst and co-feeding of methane with other hydrocarbon are the two main solutions placed helped in accordance to overcome deactivation problem. Higher amount of co-feed hydrocarbon in situ produce more amount of highly active carbon deposits which support further methane decomposition to produce extra hydrogen. The conversion rate of methane increases with increasing temperature and decreases with the flow rate in the co-feeding process in a comparable manner as observed in normal TCD. The presence of co-components in the post-reaction stream is an important challenge attempted in the co-feeding and regeneration.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,