Article ID Journal Published Year Pages File Type
8917662 Current Opinion in Electrochemistry 2017 6 Pages PDF
Abstract
Recently, the concept of using charge-modulation to manipulate the interaction of adsorbate molecules such as CO2 on certain sorbent materials has been advanced through a series of first principle computational predictions. The interactions switched on through charge-modulation shifting the Fermi level are in part, but by no means exclusively, electrostatic. In addition to electrostatics, the Fermi level shifting can be viewed as a way to modulate not only the position but also the identity and character of the frontier orbitals on the sorbent materials that engage with the adsorbate molecules. Thus, a rich new space for electrochemical modulation of surface-molecular interactions-guided by first principle computational modeling-suggests itself. Here we summarize the growing computational literature on switchable CO2 capture strategies. We also provide some new insights into contrasting electrostatic versus chemical responses to charge-modulation as exemplified by water versus CO2 on N-doped graphene surfaces, which suggest that this CO2 capture strategy could be water tolerant.
Related Topics
Physical Sciences and Engineering Chemistry Electrochemistry
Authors
, , ,